Homework 3 Solutions

Instructor: Professor Agrawal
TA: Michael Hamilton
IEOR 8100-001
April 14, 2016

Problem 1. Suppose there are N arms, each arm i is associated with a vector $x_i \in \mathbb{R}^d$. We considered the linear bandit problem of picking arm $I_t \in A_t$ at time t to minimize regret defined as:

$$\sum_{t=1}^{T} \left(\max_{i \in A_t} w^T x_i \right) - \sum_{t=1}^{T} w^T x_{I_t}$$ \hspace{1cm} (1)

In class we saw the LinUCB algorithm and showed it achieved regret:

$$R_{\text{LinUCB}}(T) = O(\sqrt{dT \log(T/\delta)}) \hspace{1cm} \text{w.p.} 1 - \delta$$ \hspace{1cm} (2)

when $||W|| \leq \sqrt{d}, ||x_i|| \leq \sqrt{d}, |r_i| \leq 1$, which does not depend on the number of arms N. Chu et. al. study the same problem and achieve following regret that depends on N, the number of arms:

$$R_{\text{Chu}}(T) = O(\sqrt{dT \log^{3}(NT \log(T)/\delta)}) \hspace{1cm} \text{w.p.} 1 - \delta$$ \hspace{1cm} (3)

Use these results show:

- (a) There are $K \leq T$ arms, each arm $i \in [K]$ is associated with x_i. At time t, given a subset A_t of the K arms, and need to pull an arm $I_t \in A_t$. Regret is defined as above, use the result of Chu et. al. to achieve regret $O(\sqrt{KdT \log^{3}(T \log(T)/\delta)})$ w.p $1 - \delta$.

- (b) There are $K \leq T$ arms, and an unknown $w_i \in \mathbb{R}^d$ for every arm i. At every time t, the decision maker observes a d-dimensional (context) vector x_t, and needs to pick an arm $I_t \in [K]$. Regret is now defined as:

$$\sum_{t=1}^{T} \left(\max_{i \in [K]} w^T x_i \right) - w^T_{I_t} x_t$$ \hspace{1cm} (4)

use the result of Chu et. al. to achieve regret $O(\sqrt{KdT \log^{3}(T \log(T)/\delta)})$ w.p $1 - \delta$.

1
Solution a. The idea here will be embed the changing information at each time step as fixed information in a much larger dimension. To this end let
\[w = (w_1^T, w_2^T, \ldots, w_K^T) \in \mathbb{R}^{dK} \] (5)
and let
\[x'_i = (0, \ldots, 0, x_i^T, 0, \ldots, 0) \in \mathbb{R}^{dK} \] (6)
so that \(< x'_i, w > = < x_i, w_i > \) where \(< \cdot, \cdot > \) is the dot product. Now applying the result of Chu et al. with \(N = K \leq T \), and dimension \(dK \) instead of \(d \) gives the desired regret bound (with probability \(1 - \delta \)).

Solution b. Similar to part (a), define:
\[w = (w_1^T, w_2^T, \ldots, w_K^T) \in \mathbb{R}^{dK} \] (7)
Now define \(A_t \) as a set of \(K \) arms, one corresponding to each of the vectors \(y_1 = (x_t, 0, 0, 0 \ldots, 0) \), \(y_2 = (0, x_t, 0, 0 \ldots, 0) \), \(y_3 = (0, 0, x_t, 0 \ldots, 0) \), \ldots, \(y_K = (0, 0, 0, 0 \ldots, 0, x_t) \). Now for \(i \)th arm in \(A_t \), \(< y_i, w > = < x_t, w_i > \). Note that the universe of all arms is much larger than \(K \), it has \(K \times T \) arms, one for each \((i, x_t) \), \(i = 1, \ldots, K, t = 1, \ldots, T \). \(A_t \) contains just \(K \) of these.

Then the problem is equivalent to selecting \(I_t \in A_t \), to minimize regret:
\[\sum_{t=1}^{T} (\max_{i \in A_t} < w^T, y_i >) - \sum_{t=1}^{T} < w, y_{I_t} > \] (8)
Now the number of arms = \(KT \) and the dimension is \(Kd \), applying the result of Chu et al. again gives the desired regret.

Problem 2. 5000 thousands movies, \(\{ M_i \}_{i=1}^{5000} \) where each film has five numerical features, \(M_i = (m_1, m_2, m_3, m_4, m_5) \). At each time step a user \(U = (u_1, u_2, u_3, u_4, u_5) \) arrives. Assume there exists some \(w \in \mathbb{R}^{10} \) such that:
\[Pr(U \text{ watches } M) = < w, (U, M) > \] (9)
where again \(< \cdot, \cdot > \) is the dot product.

Solution 2. We’ll model this problem as a linear contextual bandit problem. Let the arrival of any given user be a time step and suppose there are \(T \) arrivals in total. At time \(t \), consider the set of arms associated with \(U_t \) to be \(A_t = \{ (M_i, U_t), i \in [5000] \} \). Then regret is defined as:
\[R(T) = \sum_{i=1}^{T} \max_{x_i^* \in A_t} < w, x_i^* > - \sum_{i=1}^{T} < w, x_{I_t} > \] (10)
Then the LinUCB algorithm (for example), with probability \(1 - \delta \), achieves regret
\[R_{LinUCB}(T) \leq O(d \sqrt{\log T / \delta}) = O(\sqrt{\log T / \delta}) \] (11)
where the equality follows from noting \(d = 10 \).
Problem 3. At every time t, play $x_t \in A$ and observe w_t and reward $< x_t, w_t >$. Online gradient descent achieved $DG\sqrt{T}$ regret for this problem, where $||w_t|| \leq G$ and $||x_t|| \leq D$. Consider the convex version of this problem: every time t, play $x_t \in A$ and observed concave function $f_t(\cdot)$ and reward $r_t = f_t(x_t)$. Regret is defined as:

$$R(T) = \left(\max_{x \in A} \sum_{i=1}^{T} f_t(x) \right) - \sum_{t=1}^{T} f_t(x_t)$$

Show any any algorithm for online linear optimization can be applied to the gradients of f_t to solve the online convex optimization problem while achieving the same regret bounds.

Solution. Since f_t is concave, we have:

$$f_t(x_t) - f_t(y) \leq \nabla f_t^T(x^* - x_t)$$

where x^* is the optimal ”arm” for the online convex optimization problem. Then the claim immediately follows by defining $\{w_t = \nabla f_t(x^*)\}$, then letting $\{x_t\}$ be the sequence chosen by the arbitrary online linear optimization algorithm:

$$R_{\text{convex}}(T) = \left(\max_{x \in A} \sum_{i=1}^{T} f_t(x) \right) - \sum_{t=1}^{T} f_t(x_t) \leq \sum_{i=1}^{T} \nabla f_t(x^*)^T(x^* - x_t) = R_{\text{lin}}(T)$$

Problem 4. A media house wants to conduct a political survey using an online platform with students from $A = 100$ different institutes (where A is the index set). The media house has a budget of $T = 1000$ responses. At time t a school is chosen and a student drawn from that school responds with one of nine possible ideologies which is observed by the surveyor. Let $K_i, i \in [9]$ be the number of students who respond a certain way by the end of study. Goal: $\min \max K_i$

Solution. This problem can be solved in a number of ways. Here’s one approach: Think of each school as a distribution over the nine outcomes, and keep an empirical estimate for each school. We choose one of these distributions at each time t and observe reward vector $(0, \ldots, 1, \ldots, 0) \in \mathbb{R}$, a unit vector. Note we want the sum of rewards to be a uniform vector and also note a uniform vector minimizes the L_2 norm. Let r_t is the reward vector generated on picking school I_t at time t, then one way to formulate the problem is to choose I_ts online to minimize global convex function $||\sum_{t=1}^{T} r_t||_2^2$. We can use the algorithm for maximizing a global concave reward function with bandit vector feedback as seen in class.