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1 Bayesian bandit problem

Recall Bernoulli arms where reward is generated from a Bernoulli random variable with parameter

µi each time the algorithm pulls arm i,, i.e. P(rt = 1|It = i) = µi. The regret at time T is defined

by

R(T, {µi}) = Tµ∗ −
T∑
t=1

µIt ,

with µ∗ = maxi{µi}.
In a Bayesian setup, the algorithm knows for each arm i, a prior distribution Di = beta(αi, βi)

from which the parameter µi is sampled. The goal is either to minimize the expected regret

Eµi∼Di [R(T, {µi})] = Eµi∼Di [Tµ
∗ −

T∑
t=1

µIt ].

(here µ∗ denotes the maximum for sampled {µi}) or to maximize the expected reward

Eµi∼Di

[
T∑
t=1

rtγ
t−1

]
.

We formulate Bayesian bandit problem with known priors as a Markovian bandit problem (MBP),

so that the optimal online algorithm is same as the optimal policy for this Markovian bandit

problem.

At time t = 1, each µi follows a Beta distribution with parameter (αi, βi). That P(µi = θ) ∝
θαi−1(1− θ)βi−1 implies

E[r1|I1 = i] = E[µi] =
αi

αi + βi
.

Note that any algorithm for this problem can use history Ht−1 to made decisions at time t. For

Bernoulli arms, the history includes the number of successes and failures of each arm. Let Si,t−1
and Fi,t−1 denote the number of successes and failures respectively for arm i. Using Bayes formula,

we have
P(µi = θ|Ht−1) = P(µi = θ|Si,t−1, Fi,t−1)

∝ P(Si,t−1, Fi,t−1|µi = θ)Be(θ)

∝ θSi,t−1(1− θ)Fi,t−1θαi−1(1− θ)βi−1

which implies ∼ Beta(Si,t−1 + αi, Fi,t−1 + βi). As a consequence, the expected reward at time t
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from pulling arm i given history is

Eµi∼Di,t [µi] =
Si,t−1 + αi

Si,t−1 + αi + Fi,t−1 + βi
.

It follows from the above analysis that pulling an arm generates different expected reward every

time it is pulled. Indeed, the expected reward depends on (Si,t−1, Fi,t−1). If we view the pair

(Si, Fi) as the state of arm i, then what will happen at the current step only depends on the

previous state. We are now ready to show that finding the optimal online algorithm for Bayesian

bandit problem with known prior distributions is equivalent to solving a corresponding Markovian

bandit problem with known (r, S, p) for all arms. Indeed, the Markovian bandit problem can be

described as follows:

• The state space consists of all pairs (s, f) such that s = 1, . . . , T , f = 1, . . . , T and s+ f ≤ T .

At time t, the state of arm i is (si,t−1, fi,t−1).

• The expected reward from pulling arm i is ri((s, f)) = αi+s
αi+βi+s+f

.

• Transition function: (s, f)→ (s+ 1, f) with probability E[Beta(s+ αi, f + βi)] = s+αi
s+αi+f+βi

and (s, f)→ (s, f + 1) with probability 1− E[Beta(s+ αi, f + βi)] = f+βi
s+αi+f+βi

.

Clearly the more the algorithm pulls an arm i, the more it knows about the sampled parameter

µi. Here algorithm is facing trade-offs between exploration (getting more accurate posterior, better

future states) and exploitation (getting better immediate reward).

Remark 1. If the discounted reward is used, one can then apply Gittins index policy to achieve

“optimal” Bayesian online algorithm. However no closed form solution is known for the case where

γ = 1.

2 Markov Decision processes

We can think of bandit problems as the simplest example of sequential decision problems, which

involve an exploitation/exploration trade-off. In Markov Decision processes (MDPs), the strategy’s

actions also influence the state, in a probabilistic way. More formally, we have the following

definition for MDPs.

Definition 2. A Markov Decision Process (MDP) consists of

1. A state space S;

2. An action space A;

3. A set of Markov chains, M = (S,Pa), one for each a ∈ A;

4. A reward distribution r : S ×A → R r(s, a) = ra(s).

Some of the commonly used objectives are summarized below:

2



a Maximize discounted reward over finite time horizon,

maxE

[
T∑
t=1

γt−1rt

]

b Maximize discounted reward over infinite time horizon,

maxE

[
lim
T→∞

T∑
t=1

γt−1rt

]

c Maximize reward over infinite time horizon with a terminal state,

maxE

[
lim
T→∞

T∑
t=1

rt

]

d Maximize average reward,

maxE

[
lim
T→∞

1

T

T∑
t=1

rt

]

The following example illustrates how a number of one-player games can be modeled as a Markov

decision process.

Figure 1: Illustration of the two-dimensional grid of the tetris game

Example 3. (Tetris)

Tetris is popular video game played on a two-dimensional grid. Each square in the grid can be

either full or empty, making up a “wall of bricks” with holes. The squares fill up as objects of

different shapes fall from the top of the grid and are added to the top of the wall, giving rise to a

“jagged top”. Each falling object can be moved horizontally and can be rotated by the player in all

possible ways, subject to the constraints imposed by the sides of the grid. The game starts with an

empty grid and ends when a square in the top row becomes full (the top of the wall touches the top

of the grid). However whenever a row of full squares is created, this row is removed and the bricks

lying above this row move one row downward (the player score one point).
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The game can be essentially modeled as a MDP where the state consists of two components: (1)

the board position (a binary description of the full/empty status of each square); (2) the shape of the

current falling object. Possible actions to be taken include the horizontal positioning and rotation

applied to the falling object. The reward is jointly determined by the current board position and

how the falling object is placed. The transition from one board position to next, given the action

is deterministic, but the shape of next falling action is random. Therefore, transition probability

is given by the distribution of shape of falling objects (assuming the shape of next falling object is

iid).

Example 4. (Inventory Model)

Each month the manager of a warehouse determines current inventory (stock on hand) of a single

product. Based on this information, she decides whether or not to order additional stock from

a supplier. In doing so, he is faced with a trade-off between holding costs and the lost sales or

penalties associated with being unable to satisfy customer demand for the product. The objective

is to maximize some measure of profit over decision-making horizon. Demand is a random viable

with a probability distribution known to the manager.

Figure 2: Timing of events in an inventory model

Let st denote the inventory on hand at the beginning of the tth time period, at the number

of units ordered by the inventory manager period and Dt the random demand during this time

period. We assume that the demand has a known time-homogeneous probability distribution

pj = P(Dt = j), j = 0, 1, . . .. The inventory at decision epoch t+ 1 referred to as st+1, is related to

the inventory at decision epoch t, st, through the system equation

st+1 = max{st + at −Dt, 0} ≡ [st + at −Dt]
+.

That backlogging is not allowed implies the non-negativity of the inventory level. Denote by O(u)

the cost of ordering u units in any time period. Assuming a fixed cost K for placing orders and a

variable cost c(u) that increases with quantity ordered, we have

O(u) = [K + c(u)]1{u>0}.

The cost of maintaining an inventory of u units for a time period is represented by a nondecreasing

function h(u). Finally, if the demand is j units and sufficient inventory is available to meet demand,
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the manager receives revenue with present value f(j). In this model, the reward depends on the

state of the system at the subsequent decision epoch, that is

rt(st, at, st+1) = −O(at)− h(st + at) + f(st + at − st+1).
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