
IEOR 8100-001: Learning and Optimization for Sequential Decision Making 01/25/16

Lecture 2: Stochastic Multi-armed bandit (IID model)

Instructor: Shipra Agrawal Scribed by: Antoine Désir

1 Problem definition

We consider a multi-armed bandit problem. There are N arms. At every (discrete) time step t = 1, 2, 3, . . . , we

pull one out of the N arms. Let It ∈ {1, . . . , N} be the arm pulled at the tth time step. After pulling arm It, we

observe a reward rt ∈ [0, 1]. For a fixed time horizon T , the goal is to maximize the total reward

maximize
T∑
t=1

rt. (1)

1.1 Reward model

The next step in defining the model is to describe how the reward are generated. This is where the stochastic

assumption and IID model comes in. In particular, we assume that the reward from each arm i follows a distribution

νi with mean µi. When pulling an arm i, the reward will be generated independently from the distribution νi.

More precisely, let Ht−1 denote the history until time t− 1 (including t− 1). We can write

Ht−1 = {(I1, r1), . . . , (It−1, rt−1)}.

Then, our assumption on the reward can be written as

rt|(Ht−1, It = i) ∼ νi

which also implies

E[rt|Ht−1, It = i] = µi.

In other words, given the history up to time t−1 and the choice of arm It, the reward is drawn independently with

respect to the distribution of the chosen arm.

1.2 Regret

We measure the performance of any algorithm as a function of how well it performs compared to a target algorithm

which knows and chooses the best arm all the time. In particular, let I∗ = argmax i=1,...,Nµi and µ∗ = µI∗ be the

index of the best arm and the associated highest expected reward. We define the regret at time T by

R(T) =

T∑
t=1

(µ∗ − µIt). (2)

Note that the goal is now to minimize R(T). The choice of this regret as objective is motivated by several

observations. First, note that this objective function uses the expected rewards. This is different from the expression

(1) which was equal to the reward of a particular realization of an algorithm. Note that in the same spirit as (1),

1

we could have chosen the regret to be

T∑
t=1

(st − rt),

where st is the reward obtained at time t if we pull arm I∗. However, note that according to our model, at every

time t, we only observe the reward of the arm we pull. Therefore, in general, st is not observable and therefore the

objective is not very well defined. A hybrid objective could be

T∑
t=1

(µ∗ − rt).

This is a possible objective function, and it turns out that this is close to (2) for bounded rewards.

Finally, note that although R(T) is defined in (2) using the expected rewards µi, it is itself a random variable.

This is due to the fact that the choice of arm It is random since the observations are random. We can therefore

define the expected regret as

E[R(T)] =

T∑
t=1

(µ∗ − E[µIt]). (3)

2 Lower bound

2.1 A counting formula

For all arm i = 1, . . . , N , let ∆i = µ∗−µi and let ni,t be the number of times arm i was pulled until (and including)

time t for all time steps t = 1, . . . , T . We can rewrite the regret in time T as

R(T) =

T∑
t=1

(µ∗ − µIt) =

N∑
i=1

∑
t:It=i

(µ∗ − µi) =

N∑
i=1

ni,T∆i =
∑

i:µ∗>µi

ni,T∆i. (4)

Rewriting the regret in this form hints at an adaptive algorithm whose goal is to quickly learn the arms with large

∆is and discard them. Indeed, for arms where ∆i is large, pulling them even a few times is very costly and incurs

a higher regret.

2.2 Aside: Big-Oh notations

Definition 1.

f(n) = O(g(n)) ⇐⇒ ∃c > 0,∃n0,∀n ≥ n0, f(n) ≤ cg(n)

f(n) = o(g(n)) ⇐⇒ ∀c > 0,∃n0,∀n ≥ n0, f(n) < cg(n).

Example.

n = O(2n− 5) 2n = O(n) n = O(n2 − 10n)

n 6= o(2n− 5) n = o(n2)

Definition 2.

f(n) = Ω(g(n)) ⇐⇒ ∃c > 0,∃n0,∀n ≥ n0, f(n) ≥ cg(n)

f(n) = ω(g(n)) ⇐⇒ ∀c > 0,∃n0,∀n ≥ n0, f(n) > cg(n).

2

2.3 A lower bound

In this section, we give a lower bound on the achievable regret of any algorithm. This gives an idea of what we

can hope for in designing an algorithm. Here, we provide the lower bound is for a special case of Bernoulli reward

distributions. Bernoulli distribution is a single parameter distribution, specified by the probability of success. An

instance of Bernoulli multi-armed bandit problem is therefore entirely specified by Θ = (µ1, . . . , µN), where µi is

the expected reward for arm i. More precisely, at each time t,

rt =

{
1 w.p. µIt
0 otherwise

.

For a given instance Θ, let E[R(T,Θ)] be the expected regret of an online algorithm. We have the following result.

Theorem 3 (Lai and Robbins 1985 [3]). Consider an online algorithm whose regret satisfies, for all fixed Θ,

E[R(T,Θ)] = o(T a),∀a > 0. (5)

Then, for every instance Θ = (µ1, . . . , µN) such that µi are not all equal,

lim
T→∞

E[R(T,Θ)]

ln(T)
≥

∑
i:µ∗>µi

µ∗ − µi
KL(µi, µ∗)

, (6)

where KL(,) denote the Kullback-Leibler divergence, i.e. for all i

KL(µi, µ
∗) = µi ln

(
µi
µ∗

)
+ (1− µi) ln

(
1− µi
1− µ∗

)
. (7)

Informally, this theorem says that any good (also called consistent) algorithm, i.e. which makes less than

sublinear number of mistakes on all instances, must make at least a logarithmic number of mistakes on every

instance. Therefore, an online algorithm that can achieve a logarithmic regret is essentially an optimal online

algorithm.

To see the necessity for a condition like (5), consider an algorithm that deterministically always pulls arm 1.

Now, consider any instance Θ where arm 1 is indeed the best arm. Clearly, for this instance this algorithm will

make no mistake, and therefore the regret cannot be lower bounded as in (6) for such instances. However, note

that such an algorithm will have linear regret for instances where arm 1 is not the best arm (and not all µi are

equal), and therefore, is not a “consistent algorithm”.

This bound is extended in [3] for all single parameter distribution, and then for more general distributions in

[1].

2.4 Examining the lower bound

Note that the lower bound is instance specific. Therefore, the performance of any algorithm is determined by the

similarity between the optimal arm and other arms. In order to get a better intuition, we examine the Kullback-

Leibler divergence. This function is used to measure the distance between two distributions. It is equal to 0 when

the 2 distributions are equal and non-negative otherwise. However, unlike a proper measure, it is not symmetric.

Also, note that the KL divergence is defined on distributions. Here, since the Bernoulli distribution is a single

parameter distribution, we use its mean to represent the whole distribution. A better notation would have been

KL(νi, ν
∗).

For Bernoulli distributions, we have the following inequality.

3

Lemma 4. For all i,

2∆2
i ≤ KL(µi, µ

∗) ≤ ∆2
i

µ∗(1− µ∗)
.

Those inequalities follow from standard inequalities (left hand side follow from Pinsker’s inequality and the

right hand side from ln(x) ≤ x − 1). Intuitively, these inequalities tell us that KL(µi, µ
∗) ∼ ∆2

i . Therefore, an

algorithm achieving E[R(T,Θ)] ≤
∑
i6=I∗

ln(T)

∆i
for all T large enough, is close to optimal. Also, using (4), we see that

a near-optimal algorithm should satisfy for all T , and all suboptimal arms i,

ni,T '
ln(T)

∆2
i

.

Finally, note that the number of times an optimal algorithm pulls each suboptimal arm grows with T . In other

words, an optimal algorithm never stops exploring.

3 Algorithms

3.1 Empirical mean

A natural idea in designing an algorithm is to use the sample mean as a proxy for the real expected rewards. For

every arm i and time s, let

µ̂i,s =

∑
t≤s,It=i

rt

ni,s

be the sample mean of arm i at time step s. Since we will be using this estimate for our algorithms, we want

to know how does this sample mean differs from the real mean. This can be quantified using Chernoff-Hoeffding

bounds. Recall that we have assumed the rewards to be bounded (i.e. rt ∈ [0, 1]).

Theorem 5 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be iid random variables in [0, 1] such that for all i,

E[Xi] = µ and let X̄n = (
∑n
i=1Xi)/n be their sample mean. Then,

P(|X̄n − µ| ≥ δ) ≤ 2e−2nδ
2

.

Since µ̂i,t is average of ni,t iid samples from distribution νi, mean µi, above bounds provide that at any time t,

|µ̂i,t − µ| ≤

√
ln(t)

ni,t
(8)

with probability at least 1− 2
t2 .

3.2 Greedy Algorithm

The first natural candidate algorithm is one which pulls the best arm at every time step (after some fixed amount

of exploration). Algorithm 1 details this algorithm.

Algorithm 1 Greedy Algorithm

1: For t ≤ cN , select a random arm with probability 1/N and pull it.
2: For t > cN , pull arm with highest estimate, i.e. It = argmax i=1,...,N µ̂i,t.

4

Here c is a constant.

The regret of this algorithm is linear. Indeed, since the exploitation phase has a fixed length, there is always a

constant probability of not choosing the real best arm. Therefore, with constant probability, the algorithm incurs a

linear regret which implies a linear regret for the algorithm. More formally, consider an example with 2 arms. Arm

1 has a fixed reward of 1/4 and arm 2 has a Bernoulli reward with mean 3/4. After cN steps, there is a constant

probability, say p, that µ̂1,cN > µ̂2,cN . If this is the case, Algorithm 1 will start playing arm 1. Since the reward

for arm 1 is deterministic, the estimate µ̂1,t does not change even on making more observations, and µ̂2,t does not

change until it is played again (the algorithm does not make any new observations for this arm until it is played

again). Therefore, the algorithm keeps playing arm 1 forever incurring a regret of at least pT/2.

Note that the drawback of this algorithm is that it does not explore enough, and stops exploring after a fixed

time. Recall that any algorithm which is optimal for all time T needs to explore forever. The next algorithm tries

to overcome that flaw.

3.3 ε-greedy Algorithm

One way to overcome this fixed period of exploration is to force our algorithm to always explore. More precisely,

at every time step t, Algorithm 2 explores a random arm with some probability ε.

Algorithm 2 ε-greedy Algorithm

1: For all t = 1, . . . , N
(a) With probability 1− ε, pull arm with highest estimate, i.e. It = argmax i=1,...,N µ̂i,t
(b) With probability ε, select a random arm with probability 1/N and pull it.

Unfortunately, Algorithm 2 also incurs a linear regret. Indeed, each arm i is pulled in average at least εT/N

times and therefore, the regret incurred is at least

εT

N

∑
i:µ∗>µi

∆i,

which is linear in T . Although Algorithm 2 only achieves linear regret, it does decently well in practice. Moreover,

since it is very easy to implement, it is widely used. Furthermore, by smartly decreasing ε over time, one can

actually achieve a polylogarithmic regret [2].

References

[1] Apostolos N. Burnetas, Michael N. Katehakis. Optimal Adaptive Policies for Sequential Allocation Problems,

Advances in Applied Mathematics, 17(2):122–143, 1996.

[2] Nicolo Cesa-Bianchi and Paul Fischer. Finite-time regret bounds for the multiarmed bandit problem. In

Proceedings of ICML, pages 100108, 1998

[3] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics,

6(1):4–22, 1985.

5

