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In this lecture we will study the case where the number of arms is much bigger than the number of time periods,

i.e., N � T . Intuitively, this seems a difficult problem without further assumptions, because every arm needs to

be explored at least once. The conceptual idea behind handling large number of arms is to drop the assumption

of unrelated arms, and take advantage of the relation between them – playing one arm will give information about

“similar” arms, thus reducing the exploration required. The assumption of linear rewards in linear bandit model

will impose one specific similarity structure between arms. There are many other models, for example, convex

bandits, general metric similarity structures, spectral bandits.

1 Linear Bandits

Consider N arms, N � T . For arm every i, we are given a vector xi ∈ Rd. On pulling arm i at time t, we observe

rt such that

E [rt | It = i] = x>i ω, where ω ∈ Rd is fixed, but unknown.

To see that this model imposes a similarity structure which can be taken advantage of, consider following

example. Let

x1 =

(
0

1

)
, x2 =

(
1

1

)
, x3 =

(
0

0.5

)
, x4 =

(
1

0

)
,

pulling arm 1 tells us: some information about pulling arm 2, everything about pulling arm 3, and nothing about

pulling arm 4.

Definition 1 (Regret). For linear bandits, we define the regret as follows,

R(T ) = T ·
(

max
i=1,...,N

x>i ω

)
−

T∑
t=1

rt.

Since in this model, an arm is completely defined by the corresponding vector xi, instead of considering N

arms, we can index the arms as all vectors in a set A ⊂ Rd. This way of formulating the problem removes the

requirement of finite, or even countably many arms.

Then, at time t, the algorithm needs to pick a vector xt ∈ A, and observe rt such that E [rt |xt] = x>t ω. In this

case, the regret becomes

R(T ) = T ·
(

max
x∈A

x>ω

)
−

T∑
t=1

x>t ω.

We consider a generalization of this problem, where there is an arbitrary sequence of subsets A1, A2, . . . , AT ⊆ A,

fixed in advance, but unknown to the decision making algorithm. At time t, the algorithm first observes At, and

then it needs to pick some xt ∈ At. And regret is defined as,

R(T ) =

T∑
t=1

(
max
x∈At

x>ω

)
−

T∑
t=1

x>t ω.
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2 Applications

2.1 Route optimization

Consider a graph G with n nodes and d edges. Each arm is a possible path in the graph, then, the number of arms

could be exponentially large. We consider the following setup:

· x ∈ Rd: is the incidence vector of a path (xe = 1 if edge e belongs to the path, and xe = 0 otherwise),

· A ⊂ Rd: is the collection of all incidence vectors of paths in the graph, |A| is the number of valid paths,

· ω ∈ Rd: is such that ωe is the delay of using the edge e.

Then, the delay of a path P with incidence vector x is
∑
e∈P ωe = x>ω. Observe that using generalization to

a different set At, we can now model the problem where at every time step t, route between a different source-

destination pair (st, dt) needs to be picked.

2.2 Movie recommendations

We consider that vector represent movie features, such as cast, genre, studio, etc.

· x ∈ Rd: movie features vector (d features),

· A ⊂ Rd: set of all possible feature vectors for movies.

3 LinUCB Algorithm

Recall the UCB Algorithm:

Algorithm 1 UCB Algorithm

for t = 1, 2, . . . , T do

1. For each arm i, build estimates µ̂i,t−1 = 1
ni,t

∑
s≤t−1 :Ts=i

rs,

2. For each arm i, build confidence intervals, such that

µi ∈

[
µ̂i,t−1 −

√
log t

ni,t−1
, µ̂i,t +

√
log t

ni,t−1

]
w.p. 1− 2

T 2
,

3. For each arm i, pick the optimistic estimate UCBi,t−1 := µ̂i,t−1 +
√

log t
ni,t−1

,

4. Play arm It = argmax
i=1,...,N

UCBi,t−1.

end for

We will adequately modify this algorithm to get LinUCB algorithm for linear bandits.

LinUCB:

Step 1: Given the history up to time τ : (r1, x1), (r2, x2), . . . , (rτ , xτ ), we want to solve

ω̂τ = argmax
z∈Rd

{
τ∑
t=1

(rt − x>t z)2 + ‖z‖2
}
,

which solution is

ω̂τ = M−1τ yτ ,
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where Mτ = Id×d +
∑τ
t=1 xtx

>
t and yτ =

∑τ
t=1 rtxt.

As a sanity check: consider the N -armed bandit problem. It can be modeled as linear bandit with xt = eIt (the

It-th canonical vector) for all t, then,

Mτ = I +

τ∑
t=1

xtx
>
t =

 n1,τ + 1
. . .

nd,τ + 1

 and yτ,i =
∑

s≤τ : Is=i

rs, therefore, ω̂τ =

 µ̂1,τ

...

µ̂d,τ

 .

Step 2: Using exponential inequality for ratios and martingales, the following theorem can be proved.

Theorem 2 (Rusmevichientong, Tsitsiklis, 2010. Abbasi-Yadkori et al., 2011). If ‖xt‖2 ≤
√
Ld, ‖ω‖2 ≤

√
d and

|rt| ≤ 1. Then, with probability at least 1− δ, the vector ω lies on the set

Ct =

{
z ∈ Rd : ‖z − ω̂t‖Mt

≤

√
d log

(
TdL

δ
+ 1

)
+
√
d

}
1.

Check that this bound will recover the UCB confidence interval within
√
d in the special case of N -armed bandit

problem modeled as linear bandit.

Step 3: For every x ∈ Rd, we want to find UCB(x) such that UCB(x) ≥ x>ω. Define

UCB(x) := argmax
z∈Ct

x>z.

Step 4: At time t, pick

argmax
x∈At

max
z∈Ct

z>x.

Solving the double maximization problem of step 4 is difficult when number of arms is large (NP-hard even

when sets At are convex).

We will show that this algorithm achieves an Õ(d
√
T ) regret bound. [1] shows a modification to get an efficient

algorithm with regret bound of Õ(d3/2
√
T ).
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1Matrix norm: ‖x‖M =
√
x>Mx.
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