
IEOR 8100-001: Learning and Optimization for Sequential Decision Making 02/17/16

Lecture 9: Linear Bandits (Part II)

Instructor: Shipra Agrawal Scribed by: Yuanjun Gao

1 UCB Algorithm for Linear Bandit Setting

1.1 Setting and Algorithm

Under the linear bandit setting, at time t, we are given a set of accessible bandits At ⊆ A ⊂ Rd. We pick xt ∈ At
and observe rt. We have E[rt|xt] = w′xt, where w ∈ Rd is a unknown fixed vector. Define regret as

R(T) =

T∑
t=1

(max
x∗
t∈At

w′x∗t)−
T∑
t=1

w′xt

The UCB algorithm for linear bandit problem proceeds as follows. At each time t we obtain a (regularized) least

square estimator for w using all past observations

ŵt = arg min
z

t∑
s=1

(rs − z′xs)2 + ‖z‖2 = M−1t yt

where

Mt =I +

t∑
s=1

xsx
′
s, yt =

t∑
s=1

xsrs

There exist an elliptical confidence region for the w, as described in the following theorem

Theorem 1. ([2], Theorem 2) Assuming ‖w‖ ≤
√
d and ‖xt‖ ≤

√
d, with probably 1− δ, we have w ∈ Ct, where

Ct =

{
z : ‖z − ŵt‖Mt

≤ 2

√
d log

Td

δ

}

For any x ∈ A, we define UCBx,t = maxz∈Ct
z′x if w ∈ Ct (which holds with high probability). At each time,

the UCB algorithm then simply picks the bandit with the highest UCB given all previous observation.

xt = arg max
x∈A

UCBx,t−1 = arg max
x∈A,z∈Ct−1

x′z

1

For the regular multi-armed bandit setting, we provide a sketch for a simple analysis for the order of the regret.

R(T) =

T∑
t=1

(µ∗t − µIt) (1)

≤
T∑
t=1

UCBI∗t ,t−1 − µIt (2)

≤
T∑
t=1

UCBIt,t−1 − µIt (3)

=

N∑
i=1

∑
t:It=i

√
log T

ni,t−1
(4)

=

N∑
i=1

Ni,T∑
k=1

√
log T

k
(5)

=
√

log T
∑
i

√
ni,T (6)

≤
√

log T
√
NT (7)

(1) comes from definition. (2) hold with high probability since UCBI∗t ,t−1 > µ∗t with high probability. (3) holds by

definition of the UCB algorithm (i.e. we pick the bandit with the highest UCB). (4) holds because UCB − µ are

bounded by
√

log T
nIt,t−1

. (5) is a rearrangement of (4) by noting that each time arm i has the highest UCB, it will

be pulled one more time, so ni,t increases by 1. (6) uses
∑n
i=1

1√
i

= O(
√
n). (7) holds because ni,T = T

n gives the

worst case.

We adapt this idea to the linear bandit case by noting

R(T) ≤
T∑
t=1

w′x∗t − w′xt

=

T∑
t=1

UCBx∗
t ,t−1 − w

′xt

≤
T∑
t=1

UCBxt,t−1 − wTxt (8)

Here we have UCBxt,t = z′t−1xt for some zt−1 ∈ Ct, where ‖zt−1 − w‖Mt
≤ 2
√
d log(dT/δ) with probability 1− δ.

We proceed by

(8) =

T∑
t=1

z′t−1xt − w′xt

≤
T∑
t=1

‖zt−1 − w‖Mt−1
‖xt‖M−1

t−1
(9)

≤2
√
d log(dT/δ)

T∑
t=1

‖xt‖M−1
t−1

(10)

Here (9) comes from Cauchy-Schwarz inequality (|x′w| ≤ ‖x‖M−1‖w‖M). (10) is because, as mentioned above,

‖zt−1 − w‖Mt ≤ 2
√
d log(Td/δ) holds with probability 1− δ.

2

Now we want to get something similar to (6) to bound the summation
∑T
t=1 ‖xt‖M−1

t−1
=
∑T
t=1

√
x′tM

−1
t−1xt.

The tricky thing is that although Mt keeps increasing, there are many directions in Mt ∈ Rd×d, so even for large t,

if xt is in the direction of a eigenvector of Mt−1 with a small eigenvalue, ‖xt‖M−1
t−1

can still be large. Fortunately,

we have the following lemma

Lemma 2. (Lemma 11 of [3], or, Lemma 2 of [4]) Denote λj,t−1 as the jth largest eigenvalue of Mt−1, then

eigenvalues of Mt can be arranged so that λj,t ≥ λj,t−1, and we have

‖xt‖2M−1
t−1

≤ 10

d∑
j=1

λj,t − λj,t−1
λj,t−1

Intuitively, this lemma shows that if xt is in the direction of a eigenvector of Mt−1 with a small eigenvalue, then,

it will sufficiently increase that eigenvalue, which would benefit that direction in the next time step. Therefore, in

any direction we will get decreasing terms in the summation. More precisely, we have

(10) ≤2
√
d log(Td/δ)

T∑
t=1

√√√√∑
j

(
λj,t
λj,t−1

− 1

)
(11)

The remaining analysis involves considering the worst possible value (to maximize above expression) of λj,t, j, t

under the constraint
∑
j ΠT

t=1
λj,t

λj,t−1
=
∑
j λj,T ≤ T , and

λj,t

λj,t−1
≥ 1. It can be shown (refer to [4]: Lemma 3 in

Section 5) that at maximizer htj :=
λj,t

λj,t−1
are equal for all t, j and

∑T
t=1

√∑
j

(
λj,t

λj,t−1
− 1
)
≤ O(

√
dT ln(T)), so

that assuming d ≤ T

(10) ≤O(
√
d log(Td/δ)

√
dT ln(T)) = O(d

√
T log2(T/δ)) (12)

This proves that regret of this UCB algorithm for linear bandits is

R(T) ≤ O(d

√
T log2(T/δ))

with probability 1− δ.

2 Adversarial case

2.1 Definition

Here we want to pick xt ∈ A each time to maximize the reward (here A is not time-varying, and we assume it

to behave well. For example, we assume that it is a convex set), and we assume that at each time our expected

reward is x′twt, where the weight changes across time (and have no pattern)

In this case we compare our strategy with the best strategy that keeps pulling one single arm. So we define

regret as

R(T) =

(
max
x∈A

∑
t

x′wt

)
−

T∑
t=1

x′twt

2.2 Full information setting

Under the full information setting, we observe wt after picking xt. We can use the simple idea of online linear

optimization by gradient ascent. Notice that the reward is rt(x) = x′wt, so the gradient is simply drt(x)
dx = wt.

3

Therefore we want our xt go in the direction of wt a little. Therefore we update our choice by

xt = ΠA(xt−1 + ηwt−1)

where ΠA is the projection operator and η is a constant step-size. We have

Algorithm 1 Gradient Ascent Algorithm for Full Information Linear Bandit under Adversarial Case

Input η > 0
for t = 1,2,... do
xt = ΠA(xt−1 + ηwt−1)
Play arm xt, observe reward rt and wt

end for

Theorem 3. Under the full information setting, assuming ‖wt‖ ≤
√
d, ∀x ∈ A, ‖x‖ ≤

√
d, then using the gradient

ascent algorithm with η = 1√
T

, we have

R(T) ≤ d
√
T

More generally, suppose ‖wt‖ ≤ D, ∀x ∈ A, ‖x‖ ≤ G, then we have

R(T) ≤ DG
√
T

Note that in the adversarial N -armed bandit setting, we have a
√
T logN bound.

2.3 Bandit setting

Suppose that instead of observing w, we only get to observe rt = w′txt after picking xt, we can adapt the gradient

ascent algorithm for the full information setting by using an unbiased estimator for wt−1. Here, instead of pulling

xt, we perturb it a little by a random walk. Specifically, we generate a random vector u ∈ Rd, where each element

ui is generated independently and equals 1 or −1 with probability 1/2. Then we pull arm xt+δu to get the reward.

Interestingly, this random perturbation gives us an unbiased estimator for w

Claim 4. The ŵt defined below is an unbiased estimator of wt

ŵt = w′t
(xt + δu)u

δ

Proof.

E[ŵt] =E[
w′txtu

δ
] + E[uu′wt]

=0 + E[Idwt]

=0 + wt

Here we use the fact that E(u) = 0 (since it is a random walk) and E[uu′] = Id (since ui are independent and

u2i = 1 with probability 1)

So in sum, in the bandit setting, we use the following update rule

xt = ΠA(xt−1 + ηŵt−1)

But each time we actually pull xt + δut for a random vector ut.

By using an unbiased estimator instead of the true wt, we sacrifice in the following two ways.

4

Algorithm 2 Gradient Ascent Algorithm for Linear Bandit Setting under Adversarial Case

Input η > 0, δ > 0
for t = 1,2,... do
xt = ΠA(xt−1 + ηŵt−1)
Play xt + δut, where ut is a random vector
Observe rt
Define ŵt = w′t

(xt+δu)u
δ

end for

First the ŵt can be big, so we have to increase the D in theorem 3. Actually now we have D =
√
d
δ ≥ ‖ŵt‖,

which increase the bound by 1
δ fold. Giving us d

√
T
δ

Secondly, instead of pulling xt, we have the random perturbation δu, which adds an extra regret∑
t

δu′twt ≤ δdT

This is because we have

w′t(xt + δu) ≤ w′txt − δ|w′tu|

but |w′tu| ≤ d because ‖u‖ =
√
d and we assume ‖wt‖ ≤

√
d.

Combining the above two point together, we get a bound of the form

d
√
T

δ
+ δdT

By setting δ = 1
T 1/4 , we get a lower bound of

R(T) = O(dT 3/4)

The optimal lower bound has been proved to be Ω(d
√
T), which cannot be achieved by the algorithm stated

above. The algorithm with the optimal rate involves a much more complicated algorithm.

[5] provides analysis of online gradient ascent algorithm for full information setting, [6] extends it to bandit

setting. [7] provides efficient algorithm which achieves a regret upper bound with optimal dependence of
√
T on

time horizon T .

References

[1] Stochastic Linear Optimization under Bandit Feedback, Varsha Dani, Thomas P. Hayes, Sham M. Kakade,

COLT 2008.

[2] Improved Algorithms for Linear Stochastic Bandits, Yasin Abbasi-yadkori, Dvid Pl, Csaba Szepesvri, NIPS

2011.

[3] Using Confidence Bounds for Exploitation-Exploration Trade-offs, Peter Auer. JMLR 3(Nov):397-422, 2002.

[4] Contextual Bandits with Linear Payoff Functions. Wei Chu. Lihong Li. Lev Reyzin. Robert E. Schapire. AIS-

TATS 2011.

[5] Online Convex Programming and Generalized Infinitesimal Gradient Ascent, Martin Zinkevich. ICML 2003.

[6] Online convex optimization in the bandit setting: gradient descent without a gradient, Abraham D. Flaxman,

Adam Tauman Kalai, H. Brendan McMahan. SODA 2005.

5

[7] Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization by Jacob Abernethy , Elad

Hazan , Alexander Rakhlin, COLT 2008.

6

